Oncogenes and Tumor Suppressors Snail Cooperates with Kras In Vivo to Increase Stem Cell Factor and Enhance Mast Cell Infiltration

نویسندگان

  • Kazumi Ebine
  • Sania S. Raza
  • Krishan Kumar
  • David J. Bentrem
  • Paul J. Grippo
  • Hidayatullah G. Munshi
چکیده

Pancreatic ductal adenocarcinoma (PDAC) is associated with a pronounced fibro-inflammatory stromal reaction that contributes to tumor progression. A critical step in invasion and metastasis is the epithelial-to-mesenchymal transition (EMT), which can be regulated by the Snail family of transcription factors. Overexpression of Snail (Snai1) and mutant Kras in the pancreas of transgenic mice, using an elastase (EL) promoter, resulted in fibrosis. To identify how Snail modulates inflammation in the pancreas, we examined the effect of expressing Snail in EL-Krasmice (Kras/Snail) onmast cell infiltration, which has been linked to PDACprogression.Using this animal model system, it was demonstrated that there are increased numbers of mast cells in the pancreas of Kras/Snail mice compared with control Kras mice. In addition, it was revealed that human primary PDAC tumors with increased Snail expression are associated with increased mast cell infiltration, and that Snail expression in these clinical specimens positively correlated with the expression of stem cell factor (SCF/KITLG), a cytokine known to regulate mast cell migration. Concomitantly, SCF levels are increased in the Kras/Snail mice than in control mice. Moreover, overexpression of Snail in PDAC cells increased SCF levels, and the media conditioned by Snail-expressing PDAC cells promoted mast cell migration. Finally, inhibition of SCF using a neutralizing antibody significantly attenuated Snail-induced migration of mast cells. Implications: Together, these results elucidate how the EMT regulator Snail contributes to inflammation associated with PDAC tumors. Mol Cancer Res; 12(10); 1440–8. 2014 AACR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Snail cooperates with Kras G12D in vivo to increase stem cell factor and enhance mast cell infiltration.

UNLABELLED Pancreatic ductal adenocarcinoma (PDAC) is associated with a pronounced fibro-inflammatory stromal reaction that contributes to tumor progression. A critical step in invasion and metastasis is the epithelial-to-mesenchymal transition (EMT), which can be regulated by the Snail family of transcription factors. Overexpression of Snail (Snai1) and mutant Kras(G12D) in the pancreas of tra...

متن کامل

Oncogenes and Tumor Suppressors Snail Cooperates with Kras to Promote Pancreatic Fibrosis

Patients with pancreatic cancer, which is characterized by an extensive collagen-rich fibrotic reaction, often present with metastases. A critical step in cancer metastasis is epithelial-to-mesenchymal transition (EMT), which can be orchestrated by the Snail family of transcription factors. To understand the role of Snail (SNAI1) in pancreatic cancer development, we generated transgenic mice ex...

متن کامل

Effects of Inflammatory Cytokine Tumor Necrosis Factor-α on Human Mesenchymal Stem Cell Gene Expression: A Mechanism for Liver Regeneration

Introduction  Insulin-like growth factor I (IGF-I) which is produced in abundance in the normal adult liver, is deeply involved in hepatocyte survival, growth, and differentiation during liver development. IGF-I plays the roles via the receptor (IGF-IR) signaling pathway. IGF-IR unlike IGF-I is expressed strongly in the developing liver, but much more weakly in adults. Objective:  We hypothesi...

متن کامل

Mild hypoxia and human bone marrow mesenchymal stem cells synergistically enhance expansion and homing capacity of human cord blood CD34+ stem cells

Objective(s): Cord blood (CB) is known as a valuable source of hematopoietic stem cells (HSC). Identifying strategies that enhance expansion and maintain engraftment and homing capacity of HSCs can improve transplant efficiency. In this study, we examined different culture conditions on ex vivo expansion and homing capacity of CB-HSCs. Materials and Methods: In this study, 4-5 different units o...

متن کامل

Supernatant Metabolites from Halophilic Archaea to Reduce Tumorigenesis in Prostate Cancer In-vitro and In-vivo

Halophilic archaea are known as the novel producers of natural products and their supernatant metabolites could have cytotoxic effects on cancer cells. In the present study, we screened the anticancer potential of supernatant metabolites from eight native haloarchaeal strains obtained from a culture collection in Iran. Five human cancer cell lines including breast, lung, prostate and also human...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014